

BOTM: Echocardiography Segmentation via Bi-directional Optimal Token Matching

Al and Machine Learning Group

Paper

Echocardiography Segmentation

Background: Cardiac dysfunction, Echocardiography

- A primary cause for hospital admissions, growing global health concern
- Measuring of left ventricle changes to identify eligible patients
- Low-cost, rapid-acquisition, radiation-free, and non-invasiveness
- Supporting diagnostic decisions, risk stratification, surgical preparation

Challenge: Manual vs. Automated Segmentation

- Manual cardiac segmentation is time-consuming
- Highly depend on professional experiences, suffering observer varieties
- Speckle noise, shape variation, partial observation and visual ambiguity
- Disconnected boundaries, ambiguous localization and topological defect

Anatomical Consistency

- Our motivation comes from the clinical need to ensure anatomical consistency
- Preserving intricate anatomical details, so that corresponding objects can retain identity across frames

1. Optimal Token Matching

Token-level anatomical consistency through a novel optimal transport (OT) perspective.

2. Bi-directional Transport Process

Temporal regulation by mimic cyclic cardiac motion

End-Diastolic (ED)

End-Systolic (ES)

End-Diastolic (ED)

Pipeline: Bi-directional Optimal Token Matching (BOTM)

- 1. Paired Echocardiographic Image
- 2. Matching Score Estimation
- 3. Proxy Module with Attention Policy

Transport Plan Estimation with Sinkhorn*

strongly convex by resorting to the original OT with entropy regularization

*Cuturi M. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural information processing systems. 2013:26

Training Settings

A single NVIDIA A100 GPU, BatchSize of 8 SGD (Ir=0.001, momentum=0.9), 500 Epochs, Dice and Cross Entropy loss

Datasets

CAMUS: ES/ED Key Frame Segmentation

- Apical 2 chamber (2CH) / 4 chamber view (4CH)
- 450 patients (Training) / 50 patients (Test)

TED: Video Segmentation

- Apical 4 chamber view
- 78 patients (Training) / 20 patients (Test)

Results#

ieneralization Study. Calvids4Ch [Left] / IED [Right]											
Methods	RandomBlur			RandomGaussNoise			Mathada	RandomFrameDropout 10% 30% 50% 70%			
	10%	30%	50%	10%		50%	sternous	10%	30%	50%	70%
	0.902/0.897					0.674/0.625	UNet [23]	0.901	0.877	0.849	0.810
ransUNet [5]											
OTM(Ours)	0.906/0.892	0.895/0.887	0.862/0.858	0.900/0.907	0.873/0.887	0.832/0.841	BOTM(Ours)	0.912	0.893	0.875	0.851

Please refer our paper for more results and technical details